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Abstract:  The linear stability analysis was performed to study the effects of magnetic field and rotation on the onset of double-

diffusive micro-polar fluid convection in a horizontal porous layer. The perturbation method is used to analyze the combined effect 

of the magnetic field and temperature variation on fluid stability through a porous medium. It found that the convective behavior is 

significantly reduced or decreased by the impact of the critical thermal Rayleigh number. It likewise found that the rotation, couple 

stress parameter, Chandrasekhar number, Lewis number, and the number of solutes Rayleigh have stabilizing effects. 
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I. INTRODUCTION 

Convective porous medium instability, under the influence of an imposed magnet field, has only recently gained traction in its 

various engineering and technological applications, particularly in the production of magnetic fluids. Additional significant 

applications for this research are geophysics and earth core analysis, where the molting fluid performed, that, due to diffusion and 

the analysis of petroleum reservoir quality, can become convectively unstable [1]. A good review was conducted by [2], of most 

findings concerning the above subject. While the subject of study is quite old, there is little literature on this topic. In a porous 

medium, the magneto-convective was investigated by [3], [4], [5], [6], [7], [8], [9], [10], and [11]. Centrifugal convection was recently 

investigated in a magnetically fluid-saturated porous medium of zero gravity [12].  

Nevertheless, the standard temperature gradient (z vertical coordinate) is taken into consideration in all the above research but 

might not be so in several specific relevant situations. For instance, a time-based temperature gradient (temperature modulation) may 

contribute to the performance and structure of the produced material, thus impacting the transmission phase in the centrifugal molding 

of metals. Therefore, the temperature gradient can be taken for space and time and is used to stabilize the convective flow as an 

effective mechanism. [13], [14], [15], [16] and [17] are some of the studies available concerning the effects of temperature control 

on the convective fluid surface. Temperature modulation has been investigated for different physical models for the effect on 

the porous medium convective flow by [18], [19], [20] and [21].  

Research into such fluids is important with the increasing relevance of non-Newtonian fluids containing suspension particles in 

technological advances and industries. The research of such liquids is conducted using several processes in the industry; exotic 

stimulation, colloidal suspension solutions, extrusion of polymer fluids, liquid crystal solidification, and cooling metal plate in a bath. 

Such fluids become deformed and induce a rotation field because the suspension particle micro-polar fluid formed by [22], is micro-

rotation. Micropolar fluids take care of the effects of microstructures and microfluidic internal movements. The spin effect, because 

of the micro-rotation of freely rotating particles, produces anti-symmetric stress, called couple stress and hence forms a couple of 

stress fluids. According to [22], a special case of micropolar fluid whenever the normal vorticity of the fluid balances with the 

microrotation is a couple of stress fluids. In the non-Newtonian category, a couple of stress fluids have different properties like polar 

effects. Models of fluids that microstructure is mechanically important are polar fluids theory and associated theories. [23] developed 

constitutive formulas for a couple of stress fluids. Stokes' theory of micro-fluids is simplistic which makes polar effects like couple 

stress, body couples, and non-symmetric tensors. On the Rayleigh – Bénard problem, there are several studies on the subject of couple 

stress fluids, such as on stability/onset.  

The external rotation has attracted important exploratory as well as theoretical interest in thermal convection. As geophysical and 

oceanic flow occurrences in general, the effects of the Coriolis force on the thermal convection mechanism and the flow property are 

necessary to understand. A system obtained by rotating thermal convection to investigate hydrodynamic stability, pattern 

development and space-time chaos in nonlinear dynamic systems. In theory as in practice, the analysis of thermal convection in 

porous rotating mediums is based on engineering applications in certain important areas, such as the processing of foodstuffs, 

chemical processes, centrifugal coating of metals, solidification and rotating machines. Several scientists have worked hard over the 

last two decades to examine the external rotation effect on the convection of Rayleigh-Bénard. Most literature studies are concerned 
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with explaining how Coriolis's strength affects the beginnings of thermal convection. The aim of this paper is to study the effects of 

an electrically conducting fluid and rotation on the onset of micro-polar fluid convection in a horizontal porous layer. 

II. MATHEMATICAL FORMULATION 

We regard a porous micropolar, electrically conducting liquid, among two horizontal parallel walls with z = 0 and z = d. The 

walls in x and y are free and infinitely stretched. The rotates of the porous layer around the z-axis in uniform together with a steady 

angular velocity. The temperatures Tl and Tu with Tl > Tu and solute concentrations Sl and Su with Sl > Su are imposed at the bottom 

and top boundaries, respectively. The boundaries are impermeable, and we assume that the fluid and solid phases are in local thermal 

equilibrium. A Cartesian frame of reference is chosen with the origin in the lower boundary and the z-axis vertically upwards. The 

interaction between heat and mass transfer, known as Soret and Dufour effects, is supposed to not influence the convective flow, so 

they are ignored. The velocities are assumed to be small so that the advective and Forchheimer inertia effects are ignored. The flow 

in the porous medium is governed by the modified Darcy’s law, which includes the time derivative and the Coriolis terms employed 

as a momentum equation. The basic state is assumed to be quiescent, and we superpose infinitesimal perturbations on this basic state. 

The equations for the perturbation quantities under the Boussinesq approximation are as follows: 

 

 

 

 

Where 𝑯 is the magnetic field, 𝒒 is the velocity,𝑇and 𝑆are the temperature and concentration, respectively, 𝜌is the density, 𝜌0is the 

density of the fluid at reference𝑇 = 𝑇0, 𝑃is the hydromagnetic pressure,𝛽𝑇 and𝛽𝑆 are the coefficients of thermal and solute expansion, 

respectively, 𝜁 is the coupling viscosity coefficient or vortex viscosity, 𝜔 is the angular velocity, I is the moment of inertia, 𝜂 denotes 

shear kinematic viscosity coefficient, 𝜆′ and 𝜂′ are bulk and shear spin viscosity coefficients,  𝜓and 𝑘are the porosity and permeability 

of the porous medium, g is the acceleration due to gravity, 𝜴is the angular velocity of rotation, 𝑘𝑇is the thermal diffusivity, 𝑘𝑆is the 

solute diffusivity. Further, γ = 
(𝜌𝑐)𝑚

(𝜌𝑐𝑝)𝑓
, where (𝜌𝑐)𝑚 = (1 − 𝜓)(𝜌𝑐)𝑠 + 𝜓(𝜌𝑐𝑝)𝑓is the volumetric heat capacity of the saturated 

medium as a whole and(𝜌𝑐𝑝)𝑓 volumetric heat capacity of the fluid, with the subscripts, are the properties of the 𝑓 fluid, 𝑠 solid and 

𝑚 porous matrix, 𝜂𝑚 =
1

𝜇𝑚𝜎𝑚
is the magnetic viscosity : (𝜎𝑚: electrical conductivity and𝜇𝑚: magnetic permeability), 𝛼is the 

coefficient of thermal expansion. Dimensionless using the following transformations: d for length, ΔT for temperature, ΔS for 

concentration, k_T/d for velocity, H_0 for the magnetic field, γd^2/k_T for time and k_T/d^2 for modulation frequency and χ/d^3 

for the angular velocity. After some mathematical calculations, we then get the below non-dimensional, linear equations for disturbed 

variables; namely, W is the velocity vertical component, ω_y is the angular velocity, T is the temperature, Sis the concentration, and 

H_zis the magnet field vertical component: 

 

 (1 + 𝑁1)𝛻
4𝑊 − 𝑇𝑎

𝜕2𝑊

𝜕𝑧2
+ 𝑁1𝛻

2𝜔𝑦 + 𝛻1
2(𝑅𝑎𝑇 − 𝑅𝑎𝑆) + 𝑄𝑃𝑚𝛻2

𝜕𝐻𝑧

𝜕𝑧
= 0, (8) 

 
𝑁3∇

2𝜔𝑦 + 𝑁1∇
2𝑊 − 2𝑁1𝜔𝑦 = 0, 

(9) 

 𝛻2𝑇 − 𝑊 + 𝑁5𝜔𝑦 = 0, (10) 

 
1

𝐿𝑒
𝛻2𝑆 − 𝑊 = 0, (11) 

 
𝜕𝑊

𝜕𝑧
+ 𝑃𝑚𝛻2𝐻𝑧 = 0, (12) 

Where 𝑇𝑎 = (
2𝜴𝑘

(𝜁+𝜂)𝜓
)
2

 is the Taylor number, 𝑁1 =
𝜁

(𝜁+𝜂)
 represent the coupling parameter,𝑁3 =

𝜂′

(𝜁+𝜂)𝑑2denotes the couple stress 

parameter, 𝑁5 =
𝛽

𝜌0𝐶𝑣𝑑2 resembles the micropolar heat conduction parameter, 𝑅𝑎𝑇 =
𝛽𝑇𝑔𝛥𝑇𝑑𝑘

(𝜁+𝜂)𝑘𝑇
 thermal Rayleigh number, 𝑅𝑎𝑆 =

𝛽𝑆𝑔𝛥𝑆𝑑𝑘

(𝜁+𝜂)𝑘𝑇
 solute Rayleigh number,  𝑄 =

𝜇𝑚�⃗⃗� 0𝑑2

𝜆𝑚(𝜁+𝜂)
 denotes the Chandrasekhar number𝑃𝑚 =

(𝜁+𝜂)

𝜌0𝛾𝑚
 resembles the magnetic Prandtl 

number, 𝐿𝑒 =
𝑘𝑇

𝑘𝑆
 is Lewis's number. The infinitesimal disturbance 𝑊,𝜔𝑦 , 𝑇, 𝑆 and 𝐻𝑧are supposed to be periodic waves and 

therefore allow for a normal solution as a mode 

 

 (𝑊,𝜔𝑦,𝑇, 𝑆, 𝐻𝑧) = [𝑊(𝑧), Γ(𝑧), 𝛩(𝑧), 𝛷(𝑧), 𝐻𝑧(𝑧)]𝑒𝑥𝑝[𝑖(𝑙𝑥 + 𝑚𝑦)], 
(13) 

 
(𝑙, 𝑚: horizontal wavenumbers) . Substitute Eq.(13) with the linear form of Eqs.(8)–(12) we have 

  (1) 

  (2) 

 
 

(3) 

 
 

(4) 

 
 

(5) 

 
 

(6) 

 
 

(7) 
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(1 + 𝑁1)(𝐷

2 − 𝑎2)2𝑊 + 𝑇𝑎𝐷2𝑊 + 𝑁1(𝐷
2 − 𝑎2)Γ − 𝑎2𝑅𝑎𝑇𝛩 + 𝑎2𝑅𝑎𝑆𝛷

− 𝑄𝑃𝑚(𝐷2 − 𝑎2)(𝐷𝐻𝑧) = 0, 
(14) 

 
(𝑁3(𝐷

2 − 𝑎2) − 2𝑁1)Γ + 𝑁1(𝐷
2 − 𝑎2)𝑊 = 0, 

(15) 

 (𝐷2 − 𝑎2)𝛩 − 𝑊 + 𝑁5Γ = 0, (16) 

 
1

𝐿𝑒
(𝐷2 − 𝑎2)𝛷 − 𝑊 = 0, (17) 

 𝐷𝑊 + 𝑃𝑚(𝐷2 − 𝑎2)𝐻𝑧 = 0, (18) 

here,𝐷 =
𝑑

𝑑𝑧
,  𝑎2 = 𝑙2 + 𝑚2 . Equations (14)-(18) are solved for free-free, isothermal and permeable boundaries and hence we have 

 𝑊 =
∂2𝑊

∂𝑧2
= 𝛷 = Γ = 𝛩 = 𝐻𝑧 = 0 at 𝑧 = 0,1. (19) 

 
We assume the solutions fulfil the boundary conditions (19) by the form 

 

 (𝑊(𝑧), Γ(𝑧), 𝛩(𝑧), 𝛷(𝑧), 𝐻𝑧(𝑧)) = (𝑊0, Γ0 , 𝛩0, 𝛷0, , 𝐻𝑧0)𝑠𝑖𝑛 𝜋𝑧 (20) 

   
Therefore, substituting Eq. (20) into Eqs. (14)– (18), we obtain a matrix equation 

 𝑅𝑎𝑇 =
𝜐3𝑁1(𝑁3 − 𝑁1) + (𝑁3𝜐 − 2𝑁1)(𝜐

3 + 𝜋2𝑇𝑎 + 𝑎2𝐿𝑒𝑅𝑎𝑆 + 𝜋2𝜐𝑄)

𝑎2((𝑁1𝑁5 + 𝑁3)𝜐 − 2𝑁1)
, (21) 

where 𝜐 = 𝜋2 + 𝑎2 

 
The aforementioned findings may be viewed as akin to that of  Bhadauria and Sherani[24]  for convection in an electrically 

conducting fluid-saturated porous media, also Plam and Tyvand [25]  for convection in a rotating porous medium when the absence 

of solute and the couple stress parameter. When (𝑄 = 0) which is the situation in non-magnetoconvection, the critical value 𝑅𝑎 =
4𝜋2for 𝑎𝑐 = 𝜋2 was determined by Horton and Rogers[26], and Lapwood[27] . In the limiting situation when (𝑄 → ∞), the critical 

value achieved in Nakagawa's [28] experiment for magneto-convection in an ordinary fluid layer. 

 

III. RESULT AND DISCUSSION 

Magneto-convection linear stability is studied in a porous rotating micropolar fluid-saturated medium. The terms for the stationary 

and oscillatory Rayleigh numbers for parameters of different values, including such Taylor number, solute Rayleigh number, couple 

stress parameter, the coupling parameter, Lewis number, Chandrasekhar number and, the results are determined and the micropolar 

heat conduction parameter shown in figures. For different parameter values, neutral stability curves are shown in Figures (1-9) in the 

(Ra_S, a) plane. We have set the parameter values as Ta = 50, Ra_S= 100, Le = 20, N3=1, Q = 50, N1=0.5, N5=1, except the varying 

parameter. The neutral curves are linked in a topological sense in all of these results. Taylor effect Ta is indicated in Figure 1. (a) and 

(b) on neutral curves for all other parameters with fixed values, the minimum value Rayleigh number increases to increase Ta, 

demonstrating that the stabilization of the system is the effect of Taylor's number. Thus, with increasing Ta, the critical number of 

waves increases (i.e., the convection cell size decreases). 
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Figure 1: Plot of RaT versus a for different values of Taylor number Ta. 

 

 

Figure 2: Plot of 𝑅𝑎𝑇 verses 𝑎 for different values of couple stress parameter N3 

 Figure 2 shows the effect on neutral stability curves of a couple of stress parameters N3. Due to an increase in the value of the 

couple stress parameters, the minimum Rayleigh value increases which implies a delay in magneto-convection. 
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Figure 3: Plot of 𝑅𝑎𝑇 verses 𝑎  for different values of solute Rayleigh number 𝑅𝑎𝑆. 

The impact of the solute Rayleigh number on the beginning criteria is shown in Figure 3. We notice that by increasing the value 

of the solute Rayleigh number, the minimum Rayleigh number increases, which means an improvement in system stability. The 

Lewis number Le shown in Figure 4 effect of fixed values for other parameters on neutral stability curves. With the increase of Le, 

the critical values of Rayleigh numbers and the corresponding wave numbers increase. Furthermore, the Lewis number contrasts with 

the stability of the system. 

 

Figure 4: Plot of 𝑅𝑎𝑇 verses 𝑎 for different values of Lewis number Le. 
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Figure 5: Plot of 𝑅𝑎𝑇 verses for 𝑎 different values of Chandrasekhar number Q. 

 Figure 5 shows the effect on the neutral stability curves of Darcy Chandrasekhar. The Rayleigh number's minimum value 

increases showing a delay in the onset of magnetic convection as the Chandrasekhar number increases. The onset of the convection 

would be delayed 

. 

 

Figure 6: Plot of 𝑅𝑎𝑇 verses 𝑎  for different values of the coupling parameter N1. 

 The coupling parameter N1, was decreased in the process as in Figure 6, The existence of the buoyancy force has been 

observed, meanwhile, promoting convection beginning. So it is concluded that the system is destabilized by the magnetic 

mechanism. The figure also indicates that the increase in N1 value destabilized the system.  
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Figure 7: Plot of 𝑅𝑎𝑇 verses 𝑎  for different values of the micropolar heat conduction parameter number 

𝑁5 

In Figure 7 the marginal stability curves are drawn for the different micropolar heat conduction parameter number N5 values. 

We consider that an increase in the micropolar heat conduction parameter number N5 decreases Rayleigh's number, implying that 

the number of micropolar heat conduction parameters advances convection. 

IV. CONCLUSION 

 The results in this work show that the onset of the convection with a rotating porous layer in a micropolar fluid was 

investigated using stability analysis. Depending on the parameters operated, Rayleigh statements are produced. Taylor number, 

solute Rayleigh number, couple stress parameter, the coupling parameter, Lewis number, Chandrasekhar number and the micropolar 

heat conduction parameter, the results are determined and graphically show the effect on convection. The critical number of 

Rayleigh increases the functions of Taylor. The number of Taylor, the couple stress parameter, the Lewis number, the 

Chandrasekhar number and the solute number of Rayleigh have a stable impact on the convection. The effect of increasing numbers 

of the coupling parameter and the micropolar heat conduction parameter have destabilizing effects on the onset of convection. 
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